metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexaaguamanganese(II) bis[4-(pyridin-2vlmethoxy)benzoate] dihydrate

Li-Wei Zhang,^a Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.mv

Received 3 October 2011; accepted 5 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.060; wR factor = 0.191; data-to-parameter ratio = 17.3.

The Mn^{II} atom in the title salt, $[Mn(H_2O)_6](C_{13}H_{10}NO_3)_2$. 2H₂O, lies on a center of inversion in an octahedron of water molecules. The cations, anions and uncoordinated water molecules are linked by $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonds into a three-dimensional network. The anion is essentially planar, with an r.m.s. deviation of all non-H atoms of 0.068 Å.

Related literature

For the isotypic Co(II) salt, see: Zhang et al. (2011).

Experimental

Crystal data

$\gamma = 72.576 \ (5)^{\circ}$
V = 745.7 (3) Å ³
Z = 1
Mo $K\alpha$ radiation
$\mu = 0.51 \text{ mm}^{-1}$
T = 293 K
$0.19 \times 0.12 \times 0.11 \text{ mm}$

Data collection

```
Rigaku R-AXIS RAPID IP
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.909, \ T_{\max} = 0.946
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 18 restraints $wR(F^2) = 0.191$ H-atom parameters constrained S = 1.07 $\Delta \rho_{\rm max} = 0.62 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$ 3387 reflections 196 parameters

7320 measured reflections

 $R_{\rm int} = 0.053$

3387 independent reflections

1971 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1w - H11 \cdots O1$	0.84	1.94	2.760 (3)	164
$O1w - H12 \cdots O4w^{i}$	0.84	1.83	2.668 (4)	175
$O2w - H21 \cdots O2$	0.85	1.83	2.680 (3)	175
$O2w - H22 \cdots O2^{ii}$	0.85	1.92	2.744 (3)	164
$O3w - H31 \cdots O1^{iii}$	0.84	1.97	2.805 (3)	172
$O3w - H32 \cdot \cdot \cdot N1^{iv}$	0.85	1.96	2.789 (4)	168
$O4w - H41 \cdots O2$	0.84	2.12	2.888 (4)	151
$O4w - H42 \cdots O3w^{v}$	0.84	2.40	3.165 (4)	151

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z + 1; (v) x, y + 1, z.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5665).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925. Zhang, L.-W., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1519.

Acta Cryst. (2011). E67, m1520 [doi:10.1107/S1600536811040943]

Hexaaquamanganese(II) bis[4-(pyridin-2-ylmethoxy)benzoate] dihydrate

L.-W. Zhang, S. Gao and S. W. Ng

Comment

First-row transition metal dications form a plethora of metal dicarboxylates; however, occasionally, no direct metal–carboxylate bond is formed, and the product consists of hexaaquametal cations and carboxylate ions, the anion interacting indirectly in an outer-sphere type of coordination. 4-(Pyridin-2-ylmethoxy)benzoic acid is a commercially available carboxylic acid but there are no reports on its metal carboxylates. The reaction of the deprotonated acid with manganese(II) ions gives the hexaaquamanganese(II) salt (Scheme I, Fig. 1). The Mn^{II} atom in the salt lies on a center-of-inversion in an octahedron of water molecules. The metal atom interacts with the carboxylate ion indirectly, through the coordinated water molecules, in an outer-sphere type of coordination. The cations, anions and lattice water molecules are linked by O…H…O and O–H…N hydrogen bonds into a three-dimensional network (Table 1).

Experimental

Manganese dichloride (1 mmol) was added to an aqueous solution of 4-(pyridin-2-ylmethoxy)benzoic acid (2 mmol) that was earlier been treated with 1*M* sodium hydroxide to a pH of 6. The filtered solution was set aside for several days, after which colorless prismatic crystals separated from solution.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water H-atoms were located in a difference Fourier map but were not refined. Their temperature factors were tied by a factor of 1.5 times.

The anisotropic temperature factors of the lattice water O were restrained to be nearly isotropic.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of $Mn(H_2O)_6^{-2}(C_{13}H_{10}NO_3)^{-2}H_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Hexaaquamanganese(II) bis[4-(pyridin-2-ylmethoxy)benzoate] dihydrate

Crystal data $[Mn(H_2O)_6](C_{13}H_{10}NO_3)_2 \cdot 2H_2O$ Z = 1

$M_r = 655.51$	F(000) = 343
Triclinic, PT	$D_{\rm x} = 1.460 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.4895 (18) Å	Cell parameters from 3613 reflections
<i>b</i> = 7.6409 (18) Å	$\theta = 3.1 - 27.5^{\circ}$
c = 13.791 (3) Å	$\mu = 0.51 \text{ mm}^{-1}$
$\alpha = 84.498 \ (4)^{\circ}$	T = 293 K
$\beta = 82.851 (5)^{\circ}$	Prism, colorless
$\gamma = 72.576 \ (5)^{\circ}$	$0.19 \times 0.12 \times 0.11 \text{ mm}$
$V = 745.7 (3) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID IP diffractometer	3387 independent reflections
Radiation source: fine-focus sealed tube	1971 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.053$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -9 \rightarrow 8$
$T_{\min} = 0.909, \ T_{\max} = 0.946$	$k = -9 \rightarrow 9$
7320 measured reflections	$l = -15 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.191$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0912P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3387 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
196 parameters	$\Delta \rho_{max} = 0.62 \text{ e } \text{\AA}^{-3}$
18 restraints	$\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.5000	0.5000	0.5000	0.0466 (3)
01	0.4142 (4)	0.8219 (3)	0.26773 (17)	0.0597 (7)
O2	0.3600 (4)	1.0287 (3)	0.37937 (16)	0.0600(7)
O3	0.2466 (4)	1.5712 (3)	0.00213 (17)	0.0659 (8)
O1w	0.2694 (3)	0.6085 (3)	0.41033 (17)	0.0540 (6)
H11	0.2936	0.6767	0.3620	0.081*
H12	0.1565	0.6540	0.4332	0.081*

O2w	0.4579 (4)	0.7811 (3)	0.52917 (16)	0.0540 (7)
H21	0.4325	0.8561	0.4797	0.081*
H22	0.5051	0.8316	0.5677	0.081*
O3w	0.3151 (4)	0.4446 (3)	0.63159 (16)	0.0571 (7)
H31	0.3960	0.3577	0.6581	0.086*
H32	0.2633	0.5227	0.6736	0.086*
O4w	0.0862 (4)	1.2683 (4)	0.5115 (2)	0.0882 (10)
H41	0.1300	1.1960	0.4663	0.132*
H42	0.1734	1.2742	0.5427	0.132*
N1	0.1726 (4)	1.7360 (4)	-0.2464 (2)	0.0554 (8)
C1	0.3759 (5)	0.9845 (4)	0.2909 (2)	0.0471 (8)
C2	0.3404 (5)	1.1379 (4)	0.2128 (2)	0.0453 (8)
C3	0.3102 (5)	1.3176 (5)	0.2353 (2)	0.0520 (9)
H3	0.3103	1.3441	0.2997	0.062*
C4	0.2800 (6)	1.4580 (5)	0.1630 (2)	0.0562 (10)
H4	0.2595	1.5785	0.1789	0.067*
C5	0.2800 (5)	1.4203 (5)	0.0674 (3)	0.0510 (9)
C6	0.3117 (5)	1.2423 (4)	0.0429 (2)	0.0512 (9)
H6	0.3129	1.2168	-0.0218	0.061*
C7	0.3420 (5)	1.1005 (5)	0.1161 (2)	0.0489 (9)
H7	0.3635	0.9800	0.1000	0.059*
C8	0.2382 (6)	1.5467 (5)	-0.0977 (2)	0.0548 (9)
H8A	0.1441	1.4856	-0.1035	0.066*
H8B	0.3590	1.4720	-0.1258	0.066*
C9	0.1870 (5)	1.7363 (5)	-0.1506 (2)	0.0483 (8)
C10	0.1244 (6)	1.8998 (6)	-0.2957 (3)	0.0645 (11)
H10	0.1140	1.9023	-0.3623	0.077*
C11	0.0898 (6)	2.0632 (5)	-0.2546 (3)	0.0640 (11)
H11A	0.0563	2.1736	-0.2922	0.077*
C12	0.1053 (7)	2.0615 (6)	-0.1567 (3)	0.0705 (12)
H12A	0.0820	2.1706	-0.1261	0.085*
C13	0.1566 (6)	1.8933 (5)	-0.1041 (3)	0.0584 (10)
H13	0.1701	1.8879	-0.0377	0.070*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0650 (6)	0.0290 (4)	0.0490 (5)	-0.0172 (4)	-0.0134 (3)	0.0038 (3)
01	0.095 (2)	0.0304 (13)	0.0560 (14)	-0.0190 (13)	-0.0203 (13)	0.0039 (10)
O2	0.101 (2)	0.0381 (13)	0.0470 (15)	-0.0260 (14)	-0.0228 (13)	0.0079 (10)
O3	0.117 (2)	0.0380 (14)	0.0449 (14)	-0.0237 (15)	-0.0232 (14)	0.0096 (10)
O1w	0.0678 (17)	0.0374 (13)	0.0593 (14)	-0.0172 (12)	-0.0174 (12)	0.0047 (10)
O2w	0.092 (2)	0.0215 (11)	0.0543 (14)	-0.0192 (12)	-0.0222 (13)	-0.0011 (9)
O3w	0.0719 (18)	0.0417 (14)	0.0531 (14)	-0.0116 (13)	-0.0064 (12)	0.0035 (11)
O4w	0.075 (2)	0.081 (2)	0.108 (2)	-0.0244 (18)	0.0048 (17)	-0.0131 (18)
N1	0.067 (2)	0.0510 (19)	0.0436 (17)	-0.0110 (16)	-0.0098 (14)	0.0072 (13)
C1	0.061 (2)	0.0328 (18)	0.051 (2)	-0.0166 (17)	-0.0157 (16)	0.0043 (14)
C2	0.058 (2)	0.0315 (16)	0.0491 (19)	-0.0164 (16)	-0.0146 (16)	0.0064 (13)

C3	0.079 (3)	0.0356 (18)	0.0445 (19)	-0.0180 (18)	-0.0180 (17)	0.0015 (14)
C4	0.088 (3)	0.0320 (18)	0.051 (2)	-0.0170 (19)	-0.0186 (19)	0.0015 (15)
C5	0.065 (2)	0.0371 (18)	0.051 (2)	-0.0164 (17)	-0.0152 (17)	0.0107 (15)
C6	0.077 (3)	0.0346 (18)	0.0427 (19)	-0.0147 (18)	-0.0149 (17)	-0.0009 (14)
C7	0.068 (2)	0.0324 (17)	0.049 (2)	-0.0159 (17)	-0.0134 (17)	0.0002 (14)
C8	0.070 (3)	0.042 (2)	0.053 (2)	-0.0189 (19)	-0.0115 (18)	0.0070 (16)
C9	0.055 (2)	0.0383 (19)	0.052 (2)	-0.0150 (17)	-0.0111 (16)	0.0062 (15)
C10	0.071 (3)	0.063 (3)	0.050 (2)	-0.008 (2)	-0.0110 (19)	0.0158 (19)
C11	0.082 (3)	0.041 (2)	0.068 (3)	-0.018 (2)	-0.020 (2)	0.0173 (18)
C12	0.096 (3)	0.044 (2)	0.078 (3)	-0.025 (2)	-0.031 (2)	0.0065 (19)
C13	0.086 (3)	0.046 (2)	0.048 (2)	-0.023 (2)	-0.0237 (19)	0.0065 (16)

Geometric parameters (Å, °)

Mn1—O2w ⁱ	2.145 (2)	C2—C3	1.383 (5)
Mn1—O2w	2.145 (2)	C2—C7	1.388 (4)
Mn1—O1w	2.163 (2)	C3—C4	1.378 (4)
Mn1—O1w ⁱ	2.163 (2)	С3—Н3	0.9300
Mn1—O3w	2.229 (2)	C4—C5	1.377 (5)
Mn1—O3w ⁱ	2.229 (2)	C4—H4	0.9300
01—C1	1.252 (4)	C5—C6	1.377 (5)
O2—C1	1.279 (4)	C6—C7	1.394 (4)
O3—C5	1.374 (4)	С6—Н6	0.9300
O3—C8	1.418 (4)	С7—Н7	0.9300
O1w—H11	0.8420	C8—C9	1.521 (4)
O1w—H12	0.8447	C8—H8A	0.9700
O2w—H21	0.8498	C8—H8B	0.9700
O2w—H22	0.8503	C9—C13	1.360 (5)
O3w—H31	0.8419	C10-C11	1.361 (6)
O3w—H32	0.8451	C10—H10	0.9300
O4w—H41	0.8414	C11—C12	1.368 (5)
O4w—H42	0.8401	C11—H11A	0.9300
N1-C10	1.337 (4)	C12—C13	1.385 (5)
N1—C9	1.339 (4)	C12—H12A	0.9300
C1—C2	1.499 (4)	С13—Н13	0.9300
O2w ⁱ —Mn1—O2w	180.00 (11)	С2—С3—Н3	119.7
O2w ⁱ —Mn1—O1w	94.67 (8)	C5—C4—C3	120.2 (3)
O2w—Mn1—O1w	85.33 (8)	C5—C4—H4	119.9
O2w ⁱ —Mn1—O1w ⁱ	85.33 (8)	С3—С4—Н4	119.9
O2w-Mn1-O1w ⁱ	94.67 (8)	O3—C5—C4	114.9 (3)
O1w-Mn1-O1w ⁱ	180.0	O3—C5—C6	124.7 (3)
O2w ⁱ —Mn1—O3w	85.49 (9)	C4—C5—C6	120.4 (3)
O2w—Mn1—O3w	94.51 (9)	C5—C6—C7	119.3 (3)
O1w—Mn1—O3w	93.70 (9)	С5—С6—Н6	120.3
O1w ⁱ —Mn1—O3w	86.30 (9)	С7—С6—Н6	120.3
O2w ⁱ —Mn1—O3w ⁱ	94.51 (9)	C2—C7—C6	120.5 (3)

O2w—Mn1—O3w ⁱ	85.49 (9)	С2—С7—Н7	119.7
O1w—Mn1—O3w ⁱ	86.30 (9)	С6—С7—Н7	119.7
O1w ⁱ —Mn1—O3w ⁱ	93.70 (9)	03—C8—C9	107.4 (3)
O3w—Mn1—O3w ⁱ	180.0	O3—C8—H8A	110.2
C5—O3—C8	119.0 (3)	С9—С8—Н8А	110.2
Mn1—O1w—H11	113.3	O3—C8—H8B	110.2
Mn1—O1w—H12	123.8	С9—С8—Н8В	110.2
H11—O1w—H12	108.4	H8A—C8—H8B	108.5
Mn1—O2w—H21	113.9	N1—C9—C13	122.8 (3)
Mn1—O2w—H22	133.0	N1—C9—C8	114.5 (3)
H21—O2w—H22	106.7	C13—C9—C8	122.7 (3)
Mn1—O3w—H31	97.6	N1—C10—C11	124.1 (4)
Mn1—O3w—H32	123.2	N1—C10—H10	117.9
H31—O3w—H32	108.4	С11—С10—Н10	117.9
H41—O4w—H42	110.0	C10-C11-C12	118.5 (3)
C10—N1—C9	116.7 (3)	C10-C11-H11A	120.7
O1—C1—O2	123.2 (3)	C12—C11—H11A	120.7
01—C1—C2	119.5 (3)	C11—C12—C13	118.4 (4)
O2—C1—C2	117.2 (3)	C11—C12—H12A	120.8
C3—C2—C7	119.0 (3)	C13—C12—H12A	120.8
C3—C2—C1	120.8 (3)	C9—C13—C12	119.4 (4)
C7—C2—C1	120.2 (3)	С9—С13—Н13	120.3
C4—C3—C2	120.6 (3)	С12—С13—Н13	120.3
С4—С3—Н3	119.7		
O1—C1—C2—C3	-175.7 (3)	C1—C2—C7—C6	-179.1 (3)
O2—C1—C2—C3	6.2 (5)	C5—C6—C7—C2	0.0 (6)
O1—C1—C2—C7	2.7 (5)	C5—O3—C8—C9	176.3 (3)
O2—C1—C2—C7	-175.4 (3)	C10-N1-C9-C13	-0.5 (6)
C7—C2—C3—C4	0.8 (6)	C10—N1—C9—C8	178.8 (3)
C1—C2—C3—C4	179.2 (4)	O3—C8—C9—N1	-179.6 (3)
C2—C3—C4—C5	-0.2 (6)	O3—C8—C9—C13	-0.3 (5)
C8—O3—C5—C4	-178.1 (3)	C9—N1—C10—C11	-0.1 (6)
C8—O3—C5—C6	1.8 (6)	N1-C10-C11-C12	0.2 (7)
C3—C4—C5—O3	179.4 (4)	C10-C11-C12-C13	0.3 (6)
C3—C4—C5—C6	-0.5 (6)	N1-C9-C13-C12	1.1 (6)
O3—C5—C6—C7	-179.3 (4)	C8—C9—C13—C12	-178.2 (4)
C4—C5—C6—C7	0.6 (6)	C11—C12—C13—C9	-1.0 (7)
C3—C2—C7—C6	-0.7 (6)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

nyarogen bona geometry (m,)	Hydrogen-b	ond geometry	v (Å,	°)
------------------------------	------------	--------------	-------	----

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1w—H11…O1	0.84	1.94	2.760 (3)	164.
O1w—H12···O4w ⁱⁱ	0.84	1.83	2.668 (4)	175.
O2w—H21…O2	0.85	1.83	2.680 (3)	175.
O2w—H22···O2 ⁱⁱⁱ	0.85	1.92	2.744 (3)	164.

O3w—H31···O1 ⁱ	0.84	1.97	2.805 (3)	172.
O3w—H32···N1 ^{iv}	0.85	1.96	2.789 (4)	168.
O4w—H41…O2	0.84	2.12	2.888 (4)	151.
$O4w$ —H42···O3 w^{v}	0.84	2.40	3.165 (4)	151.

Symmetry codes: (ii) -*x*, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*+1; (i) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*+1; (v) *x*, *y*+1, *z*.

